中国网/中国发展门户网讯 数智驱动是当今世界科技呈现的新态势和新特征。以ChatGPT模型为代表的GPT技术的出现,对学术、教育及产业界均带来了变革。基础科研领域的发展是大国科技竞争力的重要保证,直接决定了社会各方面进步的步伐,重要性不言而喻。目前,在基础科学研究领域,基于GPT技术的研究已产生较多突破性成果,大语言模型技术在辅助科研人员进行研发工作或理解基础科学问题的同时,也在改变甚至颠覆基础科研生态。因此,对于我国而言,合理地促进GPT技术在科研中应用,不仅意味着科研效率的提升,更意味着科研“弯道超车”机遇的到来。 然而,也有另一部分学者在表达担忧和焦虑,认为GPT技术虽然可以在多个基础研究领域极大地提升科研效率,但它需要被合理使用,而不能被滥用;更有学者认为未来GPT技术甚至可以接管整个学术研究领域。那么,GPT技术在基础科学研究领域的应用现状如何?影响几何?在研究中使用的边界和隐患在哪里?针对这些问题,目前学界尚未给出一个系统性的分析框架和相关讨论。为此,本研究立足以上问题,构建系统分析框架,讨论GPT技术对于基础科学研究的潜在影响和可能的应对方法,助力科学研究生态的健康发展。 GPT技术变革及在科研中的应用 ChatGPT在自然语言处理方面表现出来的性能已然达到了一骑绝尘的地步,要想进一步理解ChatGPT具备如此优越性能的缘由,需要了解GPT家族模型的发展路径(图1)。 图1 GPT技术的发展历程 Figure 1 Development history of GPT technology 初代GPT模型采用无监督预训练与有监督微调相结合的研究范式,着重训练一个无监督预训练语言模型,然后根据具体的任务有监督地微调模型。GPT-2.0模型的研究范式同上,改进点为通过大幅提升训练数据量和模型规模在有监督任务中实现了更好的效果。GPT-3.0模型采用无监督预训练与提示工程相结合的研究范式,即训练过程中仅提供少量示例即可完成有监督任务。GPT-3.0模型共包含3个版本,分别对应着不同的参数量:1 750亿、130亿和76亿。GPT-3.5为GPT-3.0的升级版,是一系列以GPT-3.0为基础的改进模型(包括code-davinci-002模型等),通过评价模型的问答表现和奖惩措施进行优化更新而来。ChatGPT则是在GPT-3.5基础上引入了基于人类反馈的强化学习(RLHF)和近端策略优化算法(PPO)进行微调,利用偏好作为奖励信号来微调模型,由此生成的回复符合人类的偏好。最后,GPT-4.0是在GPT-3.5版本的基础上将文字到多模态的连通变成了现实。总而言之,GPT系列模型的成功标志着人工智能(AI)从以专用小模型训练为主的“手工作坊时代”迈入到以通用大模型预训练为主的“工业化时代”,成为AI发展的分水岭。 GPT技术革命对基础科学研究的影响 大语言模型的卓越性能为基础科学研究带来了广泛的应用前景,能够在众多科学研究场景中应用或研发了一系列领域大语言模型。文章将从应用牵引、原理驱动、创新主体迁移3个视角分析GPT技术变革对基础科研的影响(图2)。 应用牵引及其影响 包含GPT模型在内的大语言模型带来了一系列的技术革命,同时也在牵引着基础科学领域中科学难题的突破,成为加速科研进程,提高科研效率的助推器。 应用牵引的3个模式 按照包養網 花園由低到高的能力层次,可将GPT技术在基础科学研究中的应用分为3个模式(图3)。 (1)工程化应用。该模式主要是增加GPT模型的对外接口,将其作为通用的科研数字助手,协助科学研究的日常工作流程,提升学术效率。以中国科学院研发的成果为例,GPT衍生模型的工程化应用案例如表1所示。 (2)学科科研创新的助力。该模式主要基于领域数据库微调出GPT衍生模型(如基于蛋白质结构数据库打造的Protein GPT),提高模型在特定科学研究任务上的性能和适配性。目前,ChatGPT的表现类似于通才,在细分的专业性上和行业中比较顶级的专家还有很大的差距。将ChatGPT作为通用AI的技术基座,通过在本地数据库中进行微调,便可以提升模型在不同领域中的专业性,使其更适用于解决领域场景问题,成为科学假设空间的探索者,目前已有一些探索性研究工作(表2)。此外,AI推动基础科学研究的前提还在于AI技术理解不同学科基础知识,提升多元知识的表示和融合。这种情况下,首要的困难是专业领域科学家与AI专家的相互理解程度低,彼此互相促进的障碍仍然较高。…